The other side of cardiac Ca2+ signaling: transcriptional control

نویسندگان

  • Alejandro Domínguez-Rodríguez
  • Gema Ruiz-Hurtado
  • Jean-Pierre Benitah
  • Ana M. Gómez
چکیده

Ca(2+) is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca(2+) is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca(2+) activates Ca(2+)-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca(2+)-dependent enzymes are key actors: Ca(2+)/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca(2+)/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca(2+) is continuously oscillating. In this focused review, we will draw attention to location of Ca(2+) signaling: intranuclear ([Ca(2+)](n)) or cytoplasmic ([Ca(2+)](c)), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP(3)Rs) in the elevation of [Ca(2+)](n) levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca(2+)](c), needed to activate calcineurin (Cn).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of resistance training on PI3K/mTORc1 signaling in left ventricular of diabetes rats

Background: Clinical evidence points to the effective role of genetic factors and intracellular signaling pathways in physiological cardiac hypertrophy. This study aimed to assess the response of PI3K/mTORc1 signaling pathway in cardiac tissue to resistance training in obese diabetic rats. Materials and Methods: For this purpose, 21 male wistar rats (220±20 g) were obese by 6 weeks high fat di...

متن کامل

Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes.

Transient elevations of cytosolic Ca2+ are a common mechanism of cellular signaling. In striated muscle, the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) plays an important role in terminating Ca2+ transients by returning cytosolic Ca2+ to intracellular stores. Stored Ca2+ can then be released again for subsequent signaling. We down-regulated SERCA2 gene expression in cultured cardiac myocy...

متن کامل

Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury

Cardiac Ca2+ cycling and signaling are closely associated with cardiac function. Changes in cellular Ca2+ homeostasis may lead to aberrant cardiac rhythm and may play a critical role in the pathogenesis of cardiac diseases, due to their exacerbation of heart failure. MicroRNAs (miRNAs) play a key role in the regulation of gene expression at the post-transcriptional level and participate in regu...

متن کامل

Changes in expression of klotho affect physiological processes, diseases, and cancer

Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...

متن کامل

Calcium signalling remodelling and disease.

A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012